American Journal of Mathematical and Computational Sciences  
Manuscript Information
 
 
A Novel Technique to Obtain Exact Solutions for Burgers Equation
American Journal of Mathematical and Computational Sciences
Vol.2 , No. 1, Publication Date: Jul. 5, 2017, Page: 1-9
1155 Views Since July 5, 2017, 645 Downloads Since Jul. 5, 2017
 
 
Authors
 
[1]    

Qazi Mahmood Ul-Hassan, Department of Mathematics, University of Wah, Wah Cantt, Pakistan.

[2]    

Ayesha Sidiuqa, Department of Mathematics, University of Wah, Wah Cantt, Pakistan.

[3]    

Kamran Ayub, Department of Mathematics, Riphah International University, Islamabad, Pakistan.

[4]    

Madiha Afzal, Department of Mathematics, Allama Iqbal Open University, Islamabad, Pakistan.

[5]    

Muhammad Hashim, Department of Mathematics, NCBA&E, Lahore, Pakistan.

 
Abstract
 

In this paper, we use the fractional derivatives in Caputo’s sense to construct exact solutions for Burgers equation of fractional order. A generalized fractional complex transform is appropriately used to convert this equation to ordinary differential equation which subsequently resulted into number of exact solutions.


Keywords
 

Burgers Equation, Fractional Calculus, Exp-function Method


Reference
 
[01]    

A. G. Nikitin, T. A. Barannyk, Solitary waves and other solutions for nonlinear heat equations, Cent. Eur. J. Math. (2)2005 840-858.

[02]    

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[03]    

J. H. He, Some app lications of nonlinear fractional differential equations and their applications, Bull. Sci. Technol., 15(2) (1999) 86-90.

[04]    

K. Diethelm, Y. Luchko, Numerical solution of linear multiterm differential equations of fractional order, J. Comput. Anal. Appl. (6)2004 243-263.

[05]    

Z. B. Li, J. H. He, Application of the fractional complex transform to fractional differential equations, Nonlinear Sci. Lett. A, 2(3) (2011) 121-126.

[06]    

A. Rafiq, M. Ahmed, S. Hussain, A general approach to specific second order ordinary differential equations using homotopy perturbation method, Phys. Lett. A, 372(2008) 372 4973-4976.

[07]    

Z. B. Li, J. H. He, Fractional complex transform for fractional differential equations, Math. And Comput. Appl. 15(2) (2010) 970-973.

[08]    

J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A, (376)2012 257–259.

[09]    

R. W. Ibrahim, Fractional complex transforms for fractional differential equations, Advan. in Diff. Equat. 2012, vol. 2012:192 doi: 10.1186/1687 -1847-2012-192.

[10]    

J. H. He, An elementary introduction of recently developed asymptotic methods and nanomechanics in textile engineering, Int. J. Mod. Phys. B 22 (21) (2008), 3487-4578

[11]    

J. H. He and M. A. Abdou, New periodic solutions for nonlinear evolution equation using exp-method, Chaos, Solitons & Fractals, 34 (2007), 1421-1429.

[12]    

S. T. Mohyud-Din, M. A. Noor and A. Waheed, Exp-function method for generalized travelling solutions of good Boussinesq equations, J. Appl. Math. Computg. 30 (2009), 439-445, DOI 10.1007/s12190-008-0183-8.

[13]    

S. T. Mohyud-Din, M. A. Noor and K. I. Noor, Some relatively new techniques for nonlinear problems, Mathematical Problems in Engineering, Hindawi, 25, (2009), doi:10.1155/2009/234849.

[14]    

M. A. Noor, S. T. Mohyud-Din and A. Waheed, Exp-function method for solving Kuramoto-Sivashinsky and Boussinesq equations, J. Appl. Math. Computg. 29 (2008), 1-13.

[15]    

M. A. Noor, S. T. Mohyud-Din and A. Waheed, Exp-function method for generalized travelling solutions of master partial differential equations, Acta Applnda. Mathmtce. (2008), DOI: 10.1007/s10440-008-9245-z.

[16]    

T. Ozis, C. Koroglu, A novel approach for solving the Fisher’s equation using Exp-function method, Phys Lett. A 372 (2008) 3836 - 3840

[17]    

X. H. Wu, J. H. He, Exp-function method and its application to nonlinear equations, Chaos, Solitons and Fractals 38(3) (2008) 903–910.

[18]    

X. H. Wu and J. H. He, Solitary solutions, periodic solutions and compacton like solutions using the exp-function method, Comput. Math. Appl. 54 (2007), 966-986.

[19]    

E. Yusufoglu, New solitonary solutions for the MBBN equations using exp-function method, Phys. Lett. A. 372 (2008), 442-446.

[20]    

S. Zhang, Application of exp-function method to high-dimensional nonlinear evolution equation, Chaos, Solitons & Fractals, 365 (2007), 448-455.

[21]    

S. D. Zhu, Exp-function method for the Hybrid-Lattice system, Inter. J. Nonlin. Sci. Num. Simulation, 8 (2007), 461-464.

[22]    

S. D. Zhu, Exp-function method for the discrete m KdV lattice, Inter. J. Nonlin. Sci. Num. Simulation, 8 (2007), 465-468.

[23]    

N. A. Kudryashov, Exact soliton solutions of the generalized evolution equation of wave dynamics, J. Appl Math and Mech, 52 (3), (1988), 361

[24]    

S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul. 70 (2) (2005) 110-118.

[25]    

A. Ebaid An improvement on the Exp-function method when balancing the highest order linear and nonlinear terms J. Math. Anal. Appl. 392(2012) 1–5.

[26]    

A. M. Wazwaz, New higher–dimensional fifth–order nonlinear equations with multiple soliton solutions, Phys. Scr. 84 (2011) 025007.

[27]    

W. X. Ma, A. Abdeljabbar, M. G. Asaad, Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation, Appl. Math. Comput. 217 (2011) 10016–10023.

[28]    

M. A. Abdou and A. A. Soliman, Variational iteration method for solving Burger’s and coupled Burger’s equations. J. Comput. and A. Math, 181 (2006), 245-251.

[29]    

H Jafari, N Kadkhoda, CM Khalique,Travelling wave solutions of nonlinear evolution equations using the simplest equation method, Computers & Mathematics with Applications 64 (6), 2084-2088.

[30]    

M. A. Abdou, A. A. Soliman and S. T. Basyony, New application of Exp-function method for improved Boussinesq equation. Phys. Lett. A, 369 (2007), 469-475.

[31]    

J. H. He and M. A. Abdou, New periodic solutions for nonlinear evolution equation using exp-method, Chaos Solitons. Farct.34 (2007), 1421-1429.

[32]    

M. A. Noor, S. T. Mohyud-Din and A. Waheed, Exp-function method for solving Kuramoto-Sivashinsky and Boussinesq equations, J. Appl. Math. Computg. (2008), DOI: 10.1007/s12190-008-0083-y.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership