International Journal of Agricultural and Biosystems Engineering  
Manuscript Information
 
 
Mechanisms of Desiccation Tolerance in Plants during Seed to Seedling Transition
International Journal of Agricultural and Biosystems Engineering
Vol.2 , No. 5, Publication Date: Oct. 17, 2017, Page: 34-43
848 Views Since October 17, 2017, 771 Downloads Since Oct. 17, 2017
 
 
Authors
 
[1]    

Adane Gebeyehu, National Agricultural Biotechnology Research Center, Ethiopia.

 
Abstract
 

The present study was conducted to characterize the role of Arabidopsis thaliana genes in desiccation tolerance during seed to seedling transition. Dehydration stress, such as drought and desiccation, affects the physiological and biochemical activities of seeds and seedlings through either suppressing or inducing stress responsive genes of plants. Responsiveness of genes related to desiccation tolerance (DT) can be mediated with increase in abscisic acid (ABA) level. Treatment of plants with exogenous ABA, therefore, induces responses of stress-associated genes. The objective of this study was to characterize Arabidopsis thaliana stress-associated genes for their role in DT in germinated A. thaliana seeds. Four different mutant lines of Arabidopsis (sod1, daa1, di19 and vip1) were used, which stress-associated genes are knocked out. Seeds of these mutants were selected at two stages (RP-Radical Protrusion and RH-Root Hair), and analyzed for ability to acquire DT in mild-osmotic stress by applying PEG. Levels of gene expression were analyzed using RT-qPCR at RP and RH before and after PEG treatment. Eight key genes of the ABA response pathway were selected and checked for their expression level. Quantitative gene expression data for RP and RH stages showed an overall trend to increase the expression level after PEG treatment. Expression of genes of ABA biosynthesis and the receptors increase in response to PEG treatment, while ABA catabolic gene decreases. The author conclude that ABA genes are assumed to be involved in response to DT, although, three mutants: sod1, daa1 and di19 showed an increase of 20% in acquisition of DT compared to the wild type, genes involved in ABA pathway did not show difference related to phenotype.


Keywords
 

Dehydration, Radical Protrusion, Root Hair


Reference
 
[01]    

Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell, 7: 1233–1251.

[02]    

Ali, M. A., Plattner, S., Radakovic, Z., Wieczorek, K., Elashry, A., Grundler, F. M., & Bohlmann, H. (2013). An Arabidopsis ATPase gene involved in nematode‐induced syncytium development and abiotic stress responses. The Plant Journal, 74 (5), 852-866.

[03]    

Barker, C. J., Illies, C., Gaboardi, G. C. and Berggren, P. O. (2009) Inositol pyrophosphates: structure, enzymology and function. Cell. Mol. Life Sci. 66, 3851–3871.

[04]    

Barrero JM, Millar AA, Griffiths J, Czechowski T, Scheible WR, Udvardi M, Reid JB, Ross JJ, Jacobsen JV, Gubler F. (2010) Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J 61: 611–622.

[05]    

Barrero, J., Rodríguez, P. L., Quesada, V., Piqueras, P., Ponce, M. R., & Micol, J. L. (2006). Both abscisic acid (ABA)-dependent and ABA‐independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant, cell & environment, 29 (10), 2000-2008.

[06]    

Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24 (1), 23-58.

[07]    

Beyer W, Imlay J, Fridovich I (1991). Superoxide dismutases. Program for nucleic acid research in molecular biology, 40: 221–253.

[08]    

Borg, M., Brownfield, L., Khatab, H., Sidorova, A., Lingaya, M. and Twell, D. (2011). The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulation essential for sperm cell differentiation in Arabidopsis. Plant Cell, 23, 534–549.

[09]    

Cabello JV, Arce AL, Chan RL. (2012). The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J 69: 141–153.

[10]    

Cutler S. R, Rodriguez P. L, Finkelstein RR, Abrams SR. (2010). Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology 61: 651–679.

[11]    

Dai, M., Xue, Q., McCray, T., Margavage, K., Chen, F., Lee, J., Nezames, C., Guo, L., Terzaghi, W., Wan, J., Deng, X., Wang, H. (2013). The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 25: 517-34.

[12]    

Debeaujon, I., Leon-Kloosterziel, K. M., and Koornneef, M. (2000) Influence of the testa on seed dormancy, germination and longevity in Arabidopsis thaliana. Plant Physiol. 122: 403-414.

[13]    

Dekkers, B. J., Costa, M. C. D., Maia, J., Bentsink, L., Ligterink, W., & Hilhorst, H. W. (2015). Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. Planta, 1-15.

[14]    

Finkelstein R. (2013). Abscisic Acid Synthesis and Response. The Arabidopsis book 1: 1-36.

[15]    

Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W.,... & Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. The Plant Cell Online, 24 (6), 2483-2496.

[16]    

Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., & Cutler, S. R. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324 (5930), 1068-1071.

[17]    

Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in plant science, 6 (9), 431-438. http://www.arabidopsis.org

[18]    

Huijser, C., Kortstee, A., PEGo, J., Weisbeek, P., Wisman, E., & Smeekens, S. (2000). The Arabidopsis SUCROSE UNCOUPLED‐6 gene is identical to ABSCISIC ACID INSENSITIVE‐4: involvement of abscisic acid in sugar responses. The Plant Journal, 23 (5), 577-585.

[19]    

Iuchi S., Kobayashi M., Yamaguchi-Shinozaki K. & Shinozaki K. (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiology 123, 553–562.

[20]    

Komatsu, K., Suzuki, N., Kuwamura, M., Nishikawa, Y., Nakatani, M., Ohtawa, H., & Sakata, Y. (2013). Group APP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nature communications, 4.

[21]    

Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63 (4), 1593-1608.

[22]    

Krysan, P. J., Young, J. C., & Sussman, M. R. (1999). T-DNA as an insertional mutagen in Arabidopsis. The Plant Cell Online, 11 (12), 2283-2290.

[23]    

Lee, K. H., Piao, H. L., Kim, H. Y., Choi, S. M., Jiang, F., Hartung, W., & Hwang, I. (2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell, 126 (6), 1109-1120.

[24]    

Lim, E.-K., Doucet, C. J., Hou, B., Jackson, R. G., Abrams, S. R., Bowles, D. J. (2005). Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrahedron: Asymmetry 16: 143-147.

[25]    

Lopez-Molina, L., Chua, N.-H. (2000). A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol. 41: 541-547.

[26]    

Lopez-Molina, L., Mongrand, S., Chua, N.-H. (2001). A post-germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. USA 98: 4782-4787. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064–1068.

[27]    

Maia, J., Dekkers, B. J., Dolle, M. J., Ligterink, W., & Hilhorst, H. W. (2014). Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds. New Phytologist, 203 (1), 81-93.

[28]    

Maia J, Dekkers BJW, Provart NJ, Ligterink W, Hilhorst HWM. (2011). The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS ONE 6: e29123.

[29]    

Milla, M. A. R., Townsend, J., Chang, F., & Cushman, J. C. (2006). The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant molecular biology, 61 (1-2), 13-30.

[30]    

Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M. (2013). Structure and function of abscisic acid receptors. Trends in Plant Science 18: 259–266.

[31]    

Munnik, T. and Vermeer, J. E. (2010). Osmotic stress-induced phosphoinositide and inositol phosphate signaling in plants. Plant Cell Environ. 33, 655–669.

[32]    

Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T., Nambara, E. (2006). CYP707A1 and CYP707A2, which encode abscisic acid 8’-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. PlantPhysiol. 141: 97-107.

[33]    

Ribone PA, Capella M, Chan RL. (2015) Functional characterization of the homeodomain leucine zipper I transcription factor AtHB13 reveals a crucial role in Arabidopsis development. J Exp Bot 66: 5929–5943.

[34]    

Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S. Y., Jamin, M.,... & Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462 (7273), 665-668.

[35]    

Schwartz, S. H., & Zeevaart, J. A. (2010). Abscisic acid biosynthesis and metabolism. Plant Hormones, 137-155.

[36]    

Schwartz, S. H., Qin, X., & Zeevaart, J. A. (2003). Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiology, 131 (4), 1591-1601.

[37]    

Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of experimental botany, 58 (2), 221-227.

[38]    

Shinozaki K., Yamaguchi-Shinozaki K. & Seki M. (2003). Regulator network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6, 410–417.

[39]    

Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J., & Dean, C. (2013). R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science, 340 (6132), 619-621.

[40]    

Taiz, L., & Zeiger, E. (2006). Stress physiology. Plant physiology, 4.

[41]    

Tan B. C., Joseph L. M., Deng W. T., Liu L., Li Q. B., Cline K. & McCarty D. R. (2003). Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant Journal 35, 44–56.

[42]    

Tran, L.-S. P., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481-2498.

[43]    

Tripathi, P., Rabara, R. C., & Rushton, P. J. (2014). A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta, 239 (2), 255-266.

[44]    

Umezawa, T., Okamoto, M., Kushiro, T., Nambara, E., Oono, Y., Seki, M.,... & Shinozaki, K. (2006). CYP707A3, a major ABA 8′‐hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. The Plant Journal, 46 (2), 171-182.

[45]    

Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2010). Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant and cell physiology, 51 (11), 1821-1839.

[46]    

Verdier, J., Lalanne, D., Pelletier, S., Torres-Jerez, I., Righetti, K., Bandyopadhyay, K., & Buitink, J. (2013). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant physiology, 163 (2), 757-774.

[47]    

Westwood, J. H., Mccann, L., Naish, M., Dixon, H., Murphy, A. M., Stancombe, M. A., & Carr, J. P. (2013). A viral RNA silencing suppressor interferes with abscisic acid‐mediated signaling and induces drought tolerance in Arabidopsis thaliana. Molecular plant pathology, 14 (2), 158-170.

[48]    

Wind, J. J., Peviani, A., Snel, B., Hanson, J., & Smeekens, S. C. (2013). ABI4: versatile activator and repressor. Trends in plant science, 18 (3), 125-132.

[49]    

Xiong, L., & Zhu, J. K. (2003). Regulation of abscisic acid biosynthesis. Plant physiology, 133 (1), 29-36.

[50]    

Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell Online, 14 (suppl 1), S165-S183.

[51]    

Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in plant science, 10 (2), 88-94.

[52]    

Yang, C., Li, D., Mao, D., Liu, X., Ji, C., Li, X.,... & Zhu, L. (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, cell & environment, 36 (12), 2207-2218.

[53]    

Ye, N., Zhu, G., Liu, Y., Li, Y., & Zhang, J. (2011). ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and cell physiology, 52 (4), 689-698.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership