International Journal of Biological and Environmental Engineering  
Manuscript Information
 
 
Mechanism of Osseous Healing in Zirconia Dental Implants - a Short Review
International Journal of Biological and Environmental Engineering
Vol.1 , No. 1, Publication Date: Mar. 10, 2018, Page: 1-4
1364 Views Since March 10, 2018, 498 Downloads Since Mar. 10, 2018
 
 
Authors
 
[1]    

Vinita Pankaj Ved, Private Practice, Mumbai, India.

[2]    

Vivia Victor Sequeira, Private Practice, Mumbai, India.

[3]    

Dhara Hardik Shah, Private Practice, Mumbai, India.

[4]    

Gabriela Jude Fernandes, Private Practice, Mumbai, India; Department of Oral Biology, SUNY Buffalo, New York, USA.

 
Abstract
 

Dental implants have secured a place as an upcoming and genuine treatment modality. The mechanism behind the successful placement of implants is osseointegration. While Titanium and titanium alloys are one of the most commonly used materials for dental implants, recent studies have identified the useful use of zirconia in implants. However, the information available regarding the osseous healing of these implants is yet far from sufficient and is a subject entailing further research. The aim of the present review paper is to summarize the mechanisms involved in the process of bone healing around zirconia dental implants.


Keywords
 

Implants, Zirconia, Osseointegration, Bone Healing


Reference
 
[01]    

B. Guillaume, "Dental implants: A review," Morphologie, vol. 100, pp. 189-198, Dec 2016.

[02]    

R. M. Meffert, B. Langer, and M. E. Fritz, "Dental implants: a review," J Periodontol, vol. 63, pp. 859-70, Nov 1992.

[03]    

D. Adams and D. F. Williams, "A review of dental implants," Dent Update, vol. 12, pp. 480, 482, 484 passim, Sep 1985.

[04]    

P. Foreman, "Review on dental implants by Ng et al," N Z Dent J, vol. 109, p. 28, Mar 2013.

[05]    

A. V. Byeli, V. A. Kukareko, and A. G. Kononov, "Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants," J Mech Behav Biomed Mater, vol. 6, pp. 89-94, Feb 2012.

[06]    

G. P. Jayaswal, S. P. Dange, and A. N. Khalikar, "Bioceramic in dental implants: A review," J Indian Prosthodont Soc, vol. 10, pp. 8-12, Mar 2010.

[07]    

A. Siddiqi, A. S. Khan, and S. Zafar, "Thirty Years of Translational Research in Zirconia Dental Implants: A Systematic Review of the Literature," J Oral Implantol, vol. 43, pp. 314-325, Aug 2017.

[08]    

W. Gotz, T. Gedrange, C. Bourauel, and I. Hasan, "Clinical, biomechanical and biological aspects of immediately loaded dental implants: a critical review of the literature," Biomed Tech (Berl), vol. 55, pp. 311-5, Dec 2010.

[09]    

F. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, and F. Huttig, "Surface characteristics of dental implants: A review," Dent Mater, vol. 34, pp. 40-57, Jan 2018.

[10]    

M. Esposito, P. Coulthard, P. Thomsen, and H. V. Worthington, "The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review," Eur J Prosthodont Restor Dent, vol. 13, pp. 15-31, Mar 2005.

[11]    

T. Albrektsson, G. Zarb, P. Worthington, and A. R. Eriksson, "The long-term efficacy of currently used dental implants: a review and proposed criteria of success," Int J Oral Maxillofac Implants, vol. 1, pp. 11-25, Summer 1986.

[12]    

Y. Kirmanidou, M. Sidira, M. E. Drosou, V. Bennani, A. Bakopoulou, A. Tsouknidas, et al., "New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review," Biomed Res Int, vol. 2016, p. 2908570, 2016.

[13]    

T. Wassmann, S. Kreis, M. Behr, and R. Buergers, "The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants," Int J Implant Dent, vol. 3, p. 32, Dec 2017.

[14]    

M. Franchi, E. Orsini, D. Martini, V. Ottani, M. Fini, G. Giavaresi, et al., "Destination of titanium particles detached from titanium plasma sprayed implants," Micron, vol. 38, pp. 618-25, 2007.

[15]    

M. Franchi, B. Bacchelli, D. Martini, V. D. Pasquale, E. Orsini, V. Ottani, et al., "Early detachment of titanium particles from various different surfaces of endosseous dental implants," Biomaterials, vol. 25, pp. 2239-46, May 2004.

[16]    

A. N. Cranin, M. Baraoidan, and J. DeGrado, "A human clinical and histologic report of an osseointegrated titanium alloy root form implant," J Oral Implantol, vol. 23, pp. 21-4, 1997.

[17]    

B. Bacchelli, G. Giavaresi, M. Franchi, D. Martini, V. De Pasquale, A. Trire, et al., "Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep," Acta Biomater, vol. 5, pp. 2246-57, Jul 2009.

[18]    

M. Franchi, B. Bacchelli, G. Giavaresi, V. De Pasquale, D. Martini, M. Fini, et al., "Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis in sheep," J Periodontol, vol. 78, pp. 879-88, May 2007.

[19]    

R. Depprich, H. Zipprich, M. Ommerborn, E. Mahn, L. Lammers, J. Handschel, et al., "Osseointegration of zirconia implants: an SEM observation of the bone-implant interface," Head Face Med, vol. 4, p. 25, Nov 6 2008.

[20]    

S. H. Chung, H. K. Kim, W. J. Shon, and Y. S. Park, "Peri-implant bone formations around (Ti, Zr)O (2) -coated zirconia implants with different surface roughness," J Clin Periodontol, vol. 40, pp. 404-11, Apr 2013.

[21]    

K. H. Bormann, N. C. Gellrich, H. Kniha, M. Dard, M. Wieland, and M. Gahlert, "Biomechanical evaluation of a microstructured zirconia implant by a removal torque comparison with a standard Ti-SLA implant," Clin Oral Implants Res, vol. 23, pp. 1210-6, Oct 2012.

[22]    

N. F. von Maltzahn, J. Holstermann, and P. Kohorst, "Retention Forces between Titanium and Zirconia Components of Two-Part Implant Abutments with Different Techniques of Surface Modification," Clin Implant Dent Relat Res, vol. 18, pp. 735-44, Aug 2016.

[23]    

K. Sivaraman, A. Chopra, A. I. Narayan, and D. Balakrishnan, "Is zirconia a viable alternative to titanium for oral implant? A critical review," J Prosthodont Res, Aug 17 2017.

[24]    

A. Hafezeqoran and R. Koodaryan, "Effect of Zirconia Dental Implant Surfaces on Bone Integration: A Systematic Review and Meta-Analysis," Biomed Res Int, vol. 2017, p. 9246721, 2017.

[25]    

R. B. Osman and M. V. Swain, "A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia," Materials (Basel), vol. 8, pp. 932-958, Mar 5 2015.

[26]    

K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, "Zirconia as a dental implant abutment material: a systematic review," Int J Prosthodont, vol. 23, pp. 299-309, Jul-Aug 2010.

[27]    

K. P. Ananth, S. Suganya, D. Mangalaraj, J. M. Ferreira, and A. Balamurugan, "Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: an in vitro investigation," Mater Sci Eng C Mater Biol Appl, vol. 33, pp. 4160-6, Oct 2013.

[28]    

K. Kniha, K. A. Schlegel, H. Kniha, A. Modabber, F. Holzle, and K. Kniha, "Evaluation of peri-implant bone levels and soft tissue dimensions around zirconia implants-a three-year follow-up study," Int J Oral Maxillofac Surg, Nov 7 2017.

[29]    

A. Sicilia, M. Quirynen, A. Fontolliet, H. Francisco, A. Friedman, T. Linkevicius, et al., "Long-term stability of peri-implant tissues after bone or soft tissue augmentation. Effect of zirconia or titanium abutments on peri-implant soft tissues. Summary and consensus statements. The 4th EAO Consensus Conference 2015," Clin Oral Implants Res, vol. 26 Suppl 11, pp. 148-52, Sep 2015.

[30]    

R. J. Kohal, M. Bachle, W. Att, S. Chaar, B. Altmann, A. Renz, et al., "Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials," Dent Mater, vol. 29, pp. 763-76, Jul 2013.

[31]    

T. Hefti, M. Frischherz, N. D. Spencer, H. Hall, and F. Schlottig, "A comparison of osteoclast resorption pits on bone with titanium and zirconia surfaces," Biomaterials, vol. 31, pp. 7321-31, Oct 2010.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership