ISSN Print: 2381-1455  ISSN Online: 2381-1463
AASCIT Journal of Biology  
Manuscript Information
 
 
Therapeutic Efficacy of Nitraria retusa Fruit Against Hematological and Mineral Profile Disorders in Penconazole-Exposed Rats
AASCIT Journal of Biology
Vol.4 , No. 2, Publication Date: Mar. 23, 2018, Page: 35-39
972 Views Since March 23, 2018, 304 Downloads Since Mar. 23, 2018
 
 
Authors
 
[1]    

Mariem Chaâbane, Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia; Enzymes and Bioconversion Unit, Department of Biological Engineering, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia.

[2]    

Imen Ghorbel, Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia.

[3]    

Awatef Elwej, Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia.

[4]    

Choumous Kallel, Hematolology Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia.

[5]    

Kamel Jamoussi, Biochemistry Laboratory, Department of Biochemistry, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia.

[6]    

Semia Ellouze Chaabouni, Enzymes and Bioconversion Unit, Department of Biological Engineering, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia.

[7]    

Najiba Zeghal, Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia.

[8]    

Nejla Soudani, Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia.

 
Abstract
 

Our study investigated the protective effect of Nitraria retusa (N. retusa) fruit against penconazole-induced changes in blood hematological and mineral profiles in rats. Rats were treated either with penconazole (67 mg/kg body weight), N. retusa fruit aqueous extract (300 mg/kg body weight) or with penconazole associated with N. retusa. Penconazole was administered intraperitoneally every 2 days from day 7 until day 15, the sacrifice day, while N. retusa extract was administered daily by gavage during 15 days. Compared to the controls, the penconazole-treated group showed significant differences in several hematological parameters, including a decrease in red blood cells’ count, hemoglobin concentration and hematocrit value, and an increase in white blood cells and platelets’ counts. Moreover, iron, calcium and magnesium plasma levels decreased. N. retusa administration to penconazole-exposed rats improved the blood hematological and mineral profiles. Our data indicated that N. retusa fruit might be favorable to avoid changes in blood hematological and mineral parameters associated with penconazole exposure.


Keywords
 

Penconazole, Rats, Hematological and Mineral Profiles, Nitraria retusa


Reference
 
[01]    

Blaxhall, P. C. and Daisley, K. W. (1973). Routine hematological methods for use with fish blood. Journal of Fish Biology, 5: 771-781.

[02]    

Li, Z. H., Velisek, J., Grabic, R., Li, P., Kolarova, J. and Randak, T. (2011). Use of hematological and plasma biochemical parameters to assess the chronic effects of a fungicide propiconazole on a freshwater teleost. Chemosphere, 83 (4): 572-578.

[03]    

Jasper, R., Locatelli, G. O., Pilati, C. and Locatelli, C. (2012). Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup R. Interdisciplinary Toxicology, 5 (3): 133-140.

[04]    

Kanu, K. C., Ijioma, S. N., and Atiata, O. (2016). Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria. Toxics, 4 (4): 28.

[05]    

Pose-Juan, E., Rial-Otero, R. and Lopez-Periago, J. E. (2010). Sorption of penconazole applied as a commercial water-oil emulsion in soils devoted to vineyards. Journal of Hazardous Materials, 182 (1-3): 136-143.

[06]    

Chaâbane, M., Soudani, N., Benjeddou, K., Turki, M., Ayadi Makni, F., Boudawara, T., Zeghal, N. and Ellouze Ghorbel, R. (2015). The protective potential of Nitraria retusa on penconazole-induced hepatic injury in adult rats. Toxicological and Environmental Chemistry, 97 (9): 1253-1264.

[07]    

Abdel Rasoul, M. A., Marei, G. I. K. (2016). Potential therapeutic effect of turmeric (Curcuma longa) against adverse effects of penconazole fungicide to white rats. International Journal of Pharmacology and Toxicology, 4 (2): 178-186.

[08]    

El-Sharkawy, E. E., and El-Nisr, N. A. (2013). Testicular Dysfunction Induced by Penconazole Fungicide on Male Albino Rats. Comparative Clinical Pathology, 22 (3): 475-480.

[09]    

Chaâbane, M., Koubaa, M., Soudani, N., Elwej, A., Grati, M., Jamoussi, K., Boudawara, T., Ellouze Chaabouni, S. and Zeghal, N. (2017). Nitraria retusa fruit prevents penconazole-induced kidney injury in adult rats through modulation of oxidative stress and histopathological changes. Pharmaceutical Biology, 55 (1): 1061-1073.

[10]    

Chaâbane, M., Tir, M., Hamdi, S., Boudawara, O., Jamoussi, K., Boudawara, T., Ellouze Ghorbel, R., Zeghal, N. and Soudani, N. (2016). Improvement of heart redox states contributes to the beneficial effects of selenium against penconazole- induced cardiotoxicity in adult rats. Biological Trace Element Research, 169: 261-270.

[11]    

Chaâbane, M., Ghorbel, I., Elwej, A., Mnif, H., Boudawara, T., Ellouze Chaâbouni, S., Zeghal, N. and Soudani, N. (2017). Penconazole alters redox status, cholinergic function, and membrane bound ATPases in the cerebrum and cerebellum of adult rats. Human and Experimental Toxicology, 36 (8): 854-866.

[12]    

Hassan, N. S., Shikoo, E. Y., Thabet, A. R., and Al-Shaibani, E. (2015). The efficiency of Thymus laevigatus extract on the penconazole toxicity in some rabbit tissues. European Journal of Biological Research, 5 (2): 9-16.

[13]    

Koriem, K. M. M., Arbid, M. S., and El-Gendy, N. F. I. (2010). The protective role of Tropaeolum majus on blood and liver toxicity induced by diethyl maleate in rats. Toxicology Mechanisms and Methods, 20 (9): 579-586.

[14]    

Singh, T., Singh, A., Nivedita, Singh, S. K., and Singh, J. K. (2014). Efficacy of Eclipta alba (L.) against sub lethal dose of endosulfan-induced biochemical and haematological alterations in swiss albino mice. International Journal of Pharmaceutical Sciences Review and Research, 27 (2): 216-221.

[15]    

Ola-Davies, O. E., and Akinrinde, A. S. (2016). Acute sodium arsenite-induced hematological and biochemical changes in wistar rats: protective effects of ethanol extract of Ageratum conyzoides. Pharmacognosy Research, 8 (1): 26-30.

[16]    

Bellakhdar, J. (1997). La pharmacopée marocaine traditionnelle: Médecine arabe ancienne et savoirs populaires. Paris: Ibis Press; p. 764.

[17]    

Shaltout, K. H., Sheded, M. G., El-Kady, H. F., and Al-Sodany, Y. M. (2003). Phytosociology and size structure of Nitraria retusa along the Egyptian Red Sea coast. Journal of Arid Environments, 53 (3): 331-345.

[18]    

Le Floc’h, E. (1983). Contribution à une étude Ethnobotanique de la Flore Tunisienne. 2nd ed. Tunis: Ministère de l’enseignement Supérieur et de la Recherche Scientifique, Imprimerie Officielle de la République Tunisienne; p. 136-7.

[19]    

Hegazy, A. K., Al-Rowaily, S. L., Faisal, M., Alatar, A. A., El-Bana, M. I., and Assaeed, A. M. (2013). Nutritive value and antioxidant activity of some edible wild fruits in the Middle East. Journal of Medicinal Plants Research, 7 (15): 938-946.

[20]    

Chaâbane, M., Maktouf, S., Sayari, N., Zouari, S., Zeghal, N., and Ellouze Ghorbel, R. Antioxidant and antimicrobial properties of the extracts from Nitraria retusa fruits and their applications to meat product preservation. Industrial Crops and Products, 55: 295-303.

[21]    

Pottier-Alapetite, G. (1979). Flowers of Tunisia: angiosperms, dicotyledons, apetals, dialypetals. Tunisia: Ministry of Higher Education and Scientific Research and the Ministry of Agriculture; p. 456.

[22]    

Council of European Communities. (1986). Council instructions about the protection of living animals used in scientific investigations. OJEC (JO 86/609/CEE) 358: 1-18.

[23]    

Ray. (1992). Pollution and Health, Wiley Eastern Ltd., New Delhi。

[24]    

Cheng, Z., and Li, Y. (2007). What is responsible for the initiating chemistry of iron mediated lipid peroxidation: an update. Chemical Reviews, 107 (3): 748-766.

[25]    

Hur, J. W., Chang, Y. J., Lim, H. K., and Lee, B. K. (2001). Stress responses of cultured fishes elicited by water level reduction in rearing tank and fish transference during selection process. Journal of the Korean Fisheries Society, 34: 465-72.

[26]    

Abramson, N., and Melton, B. (2000). Leukocytosis: Basics of clinical assessment. American Family Physician, 62 (9): 2053-2060.

[27]    

Schafer, A. I. (2004). Thrombocytosis. The New England Journal of Medicine, 350: 1211-1219.

[28]    

Kasmi, S., Bkhairia, I., Harrabi, B., Mnif, H., Marrakchi, R., Ghozzi, H., Kallel, C., Nasri, M., Zeghal, K., Jamoussi, K. and Hakim, A. (2017). Modulatory effects of quercetin on liver histopathological, biochemical, hematological, oxidative stress and DNA alterations in rats exposed to graded doses of Score 250. Toxicology Mechanisms and Methods, 28 (1) 12-22.

[29]    

Isaac, A. O., Joseph, A. O., Victor, S. O., Lamidi, Y. I., and Andrew, A. M. (2017). Ameliorative effects of kaempferol and zinc gluconate on erythrocyte osmotic fragility and haematological parameters in Wistar rats exposed to noise stress. Insights in Biomedicine, 2 (3): 15.

[30]    

Koriem, K. M. M., Arbid, M. S. S., and Gomaa, N. E. (2017). The role of chlorogenic acid supplementation in anemia and mineral disturbances induced by 4-tert-octylphenol toxicity. Journal of Dietary Supplements, 10: 1-17.

[31]    

Pragasam, S. J., Venkatesan, V., and Rasool, M. (2013). Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 36 (1): 169-176.

[32]    

Hämäläinen, M., Nieminen, R., Vuorela, P., Heinonen, M., and Moilanen, E. (2007). Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages. Mediators of Inflammation, 2007: 45673.

[33]    

Jung, H., Kwak, H. K., and Hwang, K. T. (2014). Antioxidant and anti-inflammatory activities of cyanidin-3-glucoside and cyanidin-3-rutinoside in hydrogen peroxide and lipopolysaccharide-treated RAW264.7 cells. Food Science and Biotechnology, 23 (6): 2053.

[34]    

Haro, A., Aliaga, L. I., Lisbona, F., Barrionuevo, M., Alferez, M. and Campos, M. (2000). Beneficial effect of pollen and/or propolis on the metabolism of iron, calcium, phosphorus and magnesium in rats with nutritional ferropenic anemia. Journal of Agricultural and Food Chemistry, 48 (11): 5715-5722.

[35]    

Khalil, F. A., and El-Sheikh, N. M. (2010). The effects of dietary Egyptian propolis and bee pollen supplementation against toxicity of sodium fluoride in rats. Journal of American Science, 6 (11): 310-316.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership