AASCIT Journal of Chemistry  
Manuscript Information
 
 
Synthesis and Characterization of Electrospunned Chitosan Based Copper Nanofiber
AASCIT Journal of Chemistry
Vol.4 , No. 2, Publication Date: May 16, 2018, Page: 7-17
639 Views Since May 16, 2018, 419 Downloads Since May 16, 2018
 
 
Authors
 
[1]    

Nurudeen Olanrewaju Sanyaolu, Department of Chemistry, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria.

[2]    

Sheriff Adewuyi, Department of Chemistry, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria.

[3]    

Taofik Shittu, Department of Food Science and Technology, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria.

[4]    

Catherine Oluyemisi Eromosele, Department of Chemistry, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria.

[5]    

Nelson Torto, Department of Chemistry, Rhodes University, Grahamstown, South Africa.

 
Abstract
 

Fibrous materials prepared by the electrospinning process are increasingly attracting attention due to the structural advantages conveyed by the nanosized diameter of the constituent fibers. Consequently, an environmentally friendly Cu-crown chitosan nanofiber obtained from naturally available sources was developed. Chitosan derivative was synthesized via Schiff base condensation of salicylaldehyde and chitosan. The iminochitosan formed was electrospun into nanofiber mat at voltage of at 24 KV and flow rate 0.9 mLh-1. The nanofiber was characterized via IR, SEM, BET, TGA and DSC and it showed a good physical stability in water and relatively high heat capacity. Kinetic study shows that the sorption of copper using chitosan nanofiber follows a pseudo-first order equation. The description of the isotherm can best be done using the Langmuir isotherm model. The maximum sorption capacity and sorption affinity constant were calculated as 500.00 mg g-1 and 0.34704 Lmg-1. Desorption capacity 92% was obtained using (NH4)SO4 as regenerant. The copper-nanofiber mix has a high potency for use in industries as a result of its good water stability, favourable heat capacity, high adsorption capacity and good recyclability.


Keywords
 

Electrospinning, Nanofiber, Iminochitosan, Pretreatment


Reference
 
[01]    

Adewuyi S, Kareem KT, Atayese AO, Amolegbe SA, Akinremi CA (2011) Chitosan–cobalt(II) and nickel(II) chelates as antibacterial agents. Internat. Journ of Bio Macromol 48: 301-303.

[02]    

Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: A review. Prog Polym Sci 30: 71-109. doi: 10.1016/j.progpolymsci.2004.12.001.

[03]    

Baba Y, Hirakawa H, Yoshizuka K, Inoue K, Kawano Y (1994) Adsorption Equilibria of Silver(I) and Copper(II) Ions on N-(2-Hydroxylbenzyl)chitosan Derivative. Analytical Sciences 10: 601.

[04]    

Kramareva NV, Stakheev AY, Tkachenko OP, Klementiev KV, Grünert W, Elena D. Finashina ED, Kustov LM (2004) Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. Journal of Molecular Catalysis A: Chemical 209: 97-106. doi: 10.1016/j.molcata.2003.08.004.

[05]    

Kucherov AV, Kramareva NV, Finashina ED, Koklin AE, Kustov LM (2003) Heterogenized redox catalysts on the basis of the chitosan matrix 1. Copper complexes. Journal of Molecular Catalysis A: Chemical 198: 377-389. doi: 10.1016/S1381-1169(03)00002-5.

[06]    

Ohkawa K, Minato K, Kumagai G, Hayashi S, Yamamoto H (2006) Chitosan Nanofiber. Biomacromolecules 7: 3291-3294.

[07]    

El-hefian EA, Nasef MM, Yahaya AH (2011) Chitosan Physical Forms: - Short Review. Australian Journal of Basic and Applied Sciences 5 (5): 670-677.

[08]    

Antony R, David ST, Karuppasamy K, Saravanan K, Thanikaikarasan S, Balakumar S (2012) Structural, surface, thermal and catalytic properties of chitosan supported Cu(ii) mixed ligand complex materials. journal of surface engineered materials and advanced technology 2: 284-291 Argun ME, Dursun S, Karatas M (2009) Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination 249: 519-527.

[09]    

Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mat Res. Part A 46 (1): 60-72.

[10]    

Ondarcuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett 42 (2): 215-20.

[11]    

Feng L, Li S, Li H, Zhai J, Song Y, Jiang L (2002) Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angew Chem Int Ed 41 (7): 1221-3.

[12]    

Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8: 1739-46.

[13]    

Li H, Ke Y, Hu Y (2006) Polymer nanofibers prepared by template melt extrusion. J Appl Polym Sci 99 (3): 1018-1023.

[14]    

Ikegame M, Tajima K, Aida T (2003) Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: Hexagonal versus lamellar for recombination of polarons into bipolarons. Angew Chem Int Edit 42 (19): 2154-2157.

[15]    

Liu GJ, Ding JF, Qiao LJ, Guo A, Dymov BP, Gleeson JT, et al. (1999) Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers-Preparation, characterization, and liquid crystalline properties. Chem-A European J 5: 2740-2749.

[16]    

Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295: 2418-21.

[17]    

Yang Z, Xu B (2007) Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J Mater Chem 17 (23): 2385-2393.

[18]    

Feng X, Yang G, Xu Q, et al. (2006) Self-assembly of polyaniline/Au composites: From nanotubes to nanofibers. Macromol Rapid Comm 27 (1): 31-36.

[19]    

Hong Y, Legge R L, Zhang S (2003) Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules 4 (5): 1433-1442.

[20]    

Mart´ınez-Camacho AP, Cortez-Rocha MO, Castillo-Ortega MO, Burgos-Hern´andez A, Ezquerra-Brauera JM, Plascencia-Jatomea M (2011) Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polym Int 60: 1663-1669. DOI 10.1002/pi.3174.

[21]    

Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. eXPRESS Polymer Letters 5 (4): 342-361. DOI: 10.3144/expresspolymlett.2011.34.

[22]    

Bradshaw M, Zou J, Byrne L, Swaminathan-Iyer K, Stewart S. G, Raston, C. L (2011) Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. Chem Comm 47: 12292-12294.

[23]    

Futalan CM, Tsai W, Lin S, Dalida ML, Wan M (2012) Copper, nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in a ternary system. Sustain Environ Res 22 (6): 345-355.

[24]    

Boey HT, Tan WL, AbuBakar NHH, Bakar MA, Ismail J (2007) formation and morphology of colloidal chitosan-stabilized copper sulfides. Journal of Physical Science 18 (1): 87-101.

[25]    

Chiessi E, Gaio P, Mariano V, Baribio P (1992) Copper complex immobilized to Chitosan. Journal of Inorganic Biochemistry 46: 109-118.

[26]    

Hathawy BJ (1987) Comprehensive Coordination Chemistry. Pergamon, Oxford 5: 533.

[27]    

Fenton DE (1999) Metallobiosites and their synthetic analogues—a belief in synergism 1997–1998 Tilden Lecture. Chem Soc Rev 28: 159-168.

[28]    

El-Tahlawy K, Abdelhaleem E, Hudson SM, Hebeish A (2007) Acylation of Iminochitosan: Its Effect on Blending with Cellulose Acetate. Journal of Applied Polymer Science 104: 727-734. DOI 10.1002/app.24136.

[29]    

Nawalakhe RG (2009) Improving Healing Performance of Wound Dressing: Electrospinning of Chitosan-based, Cellulose-based Fibers and their Blends. Dissertation, North Carolina State University 90-98.

[30]    

Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328: 90-96.

[31]    

Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47: 2911-2917.

[32]    

Ye Z, Alsyouri H, Zhu S, Lin YS (2003) Catalyst impregnation and ethylene polymerization with mesoporous particle supported nickel-diamine catalyst. Polymer 44: 969-980.

[33]    

Shashidhar T, Philip L, Bhallamudi M (2006) Bench-scale column experiments to study the containment of Cr(VI) in confined aquifers by bio-transformation. Journal of Hazardous Materials 131: 200-209.

[34]    

Benavente M, Arévalo M, Martínez J (2006) Speciation and Removal of Arsenic in Column Packed with Chitosan. Water Practice & Technology 1 (4): 4-8. doi: 10.2166/WPT.2006.0089. ISSN 1751-231X.

[35]    

Sik NM, Park WH, Daewoo IHM, Hudson, SM (2010) Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydrate Polymers 80: 291-295.

[36]    

Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7: 2710-2714.

[37]    

Bokgi S, Yeom BY, Song SH, Lee C. S, Hwang TS (2008) Antibacterial Electrospun Chitosan/Poly(vinyl alcohol) Nanofibers Containing Silver Nitrate and Titanium Dioxide. Journal of Applied Polymer Science Wiley Periodicals, Inc. 111: 2892-2899.

[38]    

Saeed K, Haider S, Oh TJ, Park SY (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions Adsorption. J Membr Sci 322: 400-405.

[39]    

Maria P, Raffaela B, Mario G, Antonella P (1993) Sorption mechanism of trace amount of divalent metal ions on a chelating resin containing iminodiacetate groups. Anal Chem 65: 2522-2527.

[40]    

Rangel-Mendez JR., Monroy-Zepeda R, Leyva-Ramos E, Dˇııaz-Flores PE, Shirai K (2009) Chitosan selectivity for removing cadmium (II), Copper (II), and lead (II) from aqueous phase: pH and organic matter effect. J Hazard Mater 162: 503-511.

[41]    

Luminita M, Iuliana S, Mihai M, Valentina D, Bogdan CS, Mihail B (2013) Antifungal vanillin–imino-chitosan biodynameric films. Journal of Materials Chemistry B12: 20-35.

[42]    

Ahmed AN, Roshan J, Namdev BS, Matthew DH, Hassan MA, Rajaram KN, Sangamesh GK (2014) A smart methodology to fabricate electrospun chitosan nanofiber matrices for regenerative engineering applications. Polym. Adv. Technol. 25: 507-515.

[43]    

Nam YS, Won HP, Daewoo I, Samuel MH (2010) Effect of the Degree of Deacetylation on the Thermal Decomposition of Chitin and Chitosan Nanofibers. Carbohydrate Polymers 80: 291-295.

[44]    

Ingrid C, Roberto N, Francesco T, Maria GF, Flavia F, Silvia T, Giuliana M (2015) Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polymer Degradation and Stability 1: 112.

[45]    

Saad BQ, Muhammad SZ, Shariq N, Zohaib K, Altaf HS, Shehriar H, Ihtesham UR (2018). Internationa l Journal of Molecular Sciences. Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 19: 407.

[46]    

Qasim SB, Rehman IU (2018) Application of Nanomaterials in Dentistry. In Micro and Nanomanufacturing Volume II; Springer: Berlin, Germany. 2: 319-336.

[47]    

Bhardwaj N, Kundu SC (2010) Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28: 325-347.

[48]    

He, ZY, Nie HL, White CB, Zhu LM, Zhou YT, Zheng Y (2008) Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Bioresource Technol 99: 7954-7958.

[49]    

Sprynskyy M, Buszewski B, Terzyk, AP, Namiésnik J (2006) Study of the selectionm mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interf Sci 304: 21-28.

[50]    

Argun ME, Dursun S, Karatas M (2009). Removal Of Cd(II), Pb(II), Cu(II) and Ni(II) from Water using Modified Pine Bark. Desalination 249: 519-527.

[51]    

Zhou L, Wang Y, Liu Z, Huang Q (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres J Hazard Mater 161: 995-1002.

[52]    

Ren Y, Zhang M, Zhao D (2008) Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper. Desalination 228: 135-149.

[53]    

Xhen H, Wang, A (2009) Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite. J Hazard Mater 165: 223-231.

[54]    

Yian Z, Shuibo H, Aiqin W (2010) Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly (acrylic acid)/sodium humate hydrogels. Desalination 263: 170-175.

[55]    

Ngah WS, Endud CS, Mayanar R (2002) Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive & Functional Polymers 50: 181-190.

[56]    

Oh S, Kwak MY, Shin WS (2009) Competitive sorption of lead and cadmium onto sediments. J Chem Eng 152: 376-388.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership