ISSN Print: 2381-1277  ISSN Online: 2381-1285
AASCIT Journal of Health  
Manuscript Information
 
 
Protection of the Eyes, Thyroid and Gonads in Pediatric Tomodensitometry: Use of the Leaded Apron
AASCIT Journal of Health
Vol.6 , No. 1, Publication Date: Feb. 24, 2020, Page: 1-8
406 Views Since February 23, 2020, 193 Downloads Since Feb. 23, 2020
 
 
Authors
 
[1]    

Eddy Fotso Kamdem, Condensed Matter and Nanoscience Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon.

[2]    

Odette Ngano Samba, General Hospital of Yaoundé, Yaoundé, Cameroon.

[3]    

Alain Fotue, Condensed Matter and Nanoscience Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon.

[4]    

Fai Cornellius Lukong, Condensed Matter and Nanoscience Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon.

 
Abstract
 

The eyes, gonads, breasts and thyroid are the most radiosensitive organs of the human body. The CT scan of the head and body may unnecessarily expose them to ionizing radiation even if the area of clinical interest is far from them. The aim of this study is to show how the manipulator's lead apron can be used to protect highly radiosensitive organs during children's CT scan. The study also proposes protection systems used in developed countries and compares the scan lengths of children in that country with certain international publications. In 2015, children's radiosensitive organs were not protected during acquisitions. After recommendations proposed in 2016 on the usefulness of the protection of these organs, in 2018, despite the great scan lengths of their scanners, the organs are protected with the leaded apron in the hospitals studied. This protective apron was placed on the appropriate bodies parts, no relevant artifacts were found, and the image quality was not affected. The use of a shield (lead or bismuth) for radiosensitive organs reduces the dose in tissues and directly protects the radiosensitive parts contained in great scan lengths. The use of the lead apron to cover these organs is possible when it is well positioned on the patient. Thyroid and breast protection should be used when the resulting artifact does not affect the quality of the image.


Keywords
 

Computed Tomography, Bismuth Shielding, Image Quality, Radiosensitive Organs, Ionizing Radiation


Reference
 
[01]    

Baysson. H.. Risque de cancer après exposition aux rayonnements ionisants au cours d’examens par scanner durant l’enfance. Période: avril 2013 à août 2013. IRSN-PRP-HOM-Laboratoired’épidémiologie-92260 Fontenay-aux-Roses-France. Anses. Bulletin de veille scientifique n° 22. Santé/Environnement/Travail. Décembre 2013: 60-62.

[02]    

Brisse H., Sirinelli D.. Réglementation Française et contrôle de l’irradiation en tomodensitométrie chez l’enfant. Arch Pediatr. 2006; 13 (6): 788-90.

[03]    

International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1991; 21 (60): 1-201.

[04]    

Tubiana M., Aurengo A., Averbeck D., and al. « The debate on the use of linear no thresholdfor assessing the effects of low doses », J Radiol Prot. 2006; 26: 317-324.

[05]    

Wall B. F., Kendall G. M., Edwards A. A., and al. «What are the risks from medical X-rays and other low dose radiation?». Br J Radiol. 2006; 79: 285-294.

[06]    

Wang J, Duan X, Christner JA, Leng S, Grant KL, McCollough CH (2012) Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology 262: 191–198.

[07]    

Hopper KD, Neuman JD, King SH, Kunselman AR (2001) Radioprotection to the eye during CT scanning. Am J Neuroradiol 22: 1194–1198.

[08]    

Raissaki M, Perisinakis K, Damilakis J, Gourtsoyiannis N (2010) Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction. Pediatr Radiol 40: 1748–1754.

[09]    

McLaughlin DJ, Mooney RB (2004) Dose reduction to radiosensitive tissues in CT. Do commercially available shields meet the users’ needs? Clin Radiol 59: 446–450.

[10]    

Heaney DE, Norvill CA (2006) A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Aust Phys Eng Sci Med (supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine) 29: 172–178.

[11]    

Nikupaavo U, Kaasalainen T, Reijonen V, Ahonen SM, Kortesniemi M (2015) Lens dose in routine head CT: comparison of different optimization methods with anthropomorphic phantoms. Am J Roentgenol 204: 117–123.

[12]    

Reimann AJ, Davison C, Bjarnason T, Thakur Y, Kryzmyk K, Mayo J et al (2012) Organ-based computed tomographic (CT) radiation dose reduction to the lenses: impact on image quality for CT of the head. J Comput Assist Tomogr 36: 334–338.

[13]    

Huggett J, Mukonoweshuro W, Loader R (2013) A phantombased evaluation of three commercially available patient organ shields for computed tomography X-ray examinations in diagnostic radiology. Radiat Prot Dosim 155: 161–168.

[14]    

Hopper KD, King SH, Lobell ME, TenHave TR, Weaver JS (1997) The breast: in-plane X-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments. Radiology 205: 853–858.

[15]    

Gerhard A., Gabriele B.. Radiation Protection in Pediatric Radiology. Médecine. Deutsches Ärzteblatt International, Dtsch Arztebl Int. 2011; 108 (24): 412-13.

[16]    

Verdun F. R., Gutierrez D., Vader J. P. et al CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. EurRadiol. 2008; 18: 1980-1986.

[17]    

Williams J. R.. Ethics and human rights in South African medicine. CMAJ. 2000; 162: 1167-1170.

[18]    

Alberto Ciarmatori, Nocetti L., Mistretta G. and al. (2016) Reducing absorbed dose to eye lenses in head CT examinations: the effect to bismuth shielding. Aust Phys Eng Sci Med (2016) 39: 583–589.

[19]    

Heaney D. E., Norvill C. A. J.. (2006) A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Aust Phys Eng Sci Med (2006) 29 (2): 172–178.

[20]    

Brisse H. J. et Aubert B.. Niveaux d’exposition en tomodensitométrie multi coupes pédiatrique: résultats de l’enquête dosimétrique SFIPP/IRSN 2007-2008. Pédaitrie. J Radiol. Edition françaises de Radiologie, Paris. 2009; 90: 297-15.

[21]    

Yeoman, L. J., Howarth, L., Britten, A., Cotterill, A. and Adam, E. J., Gantry angulation in Brain CT: Dosage implications effect on posterior fossa artefacts and current international practice, Radiology, 184.: 113-116, 1992.

[22]    

Rozeik, C., Kotterer, O., Preiss, J., Scutz, M., Dingler, W and Deininger, H. K., Cranial CT artefacts and Gantry Angulation, J. Comp Asst Tomography. 15.: 381-386, 1991.

[23]    

Huda W. et Vance A.. Patient Radiotion Doses from Adult and Pediatric CT. CT imaging. Original research. AJR. February 2007; 188 (2): 540-546.

[24]    

Shrimpton P. C.. Asseement of Patient Dose in CT. Restricted-Commercial. Contract report. EC Contract N°: FIGM-CT-2000-20078 Deliverable N°. D5 (Work pactage 5) NRPB-PE/1/2004. March 2004: 1-15.

[25]    

Rutger A., Nievelstein J., Ingrid M., and al. Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol. 2010; 40: 1324-1344.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership