
American Association for Science and Technology

AASCIT Communications

Volume 1, Issue 3

October 20, 2014 online

Adapting Data for Web Applications That Use IPv6
Internet Protocol

Dănuţ-Octavian Simion

Keywords: Java Custom Methods, Ipv6 Internet Protocol, Java Objects Integration,

Open-Source Java Components, UML Diagrams, Web Applications

he paper presents the study cases

for using different types of data in

the web applications that use IPv6

Internet Protocol. These types of

applications may use various sets of

data that come from different sources

or results from other business

applications. A different way of using

these data in web applications that use

IPv6 Internet Protocol is to apply Java

custom methods from a package

written by the developer for this case.

The data will be transferred from the

server side to the numerous clients

according to the request made through

the web application. The custom Java

package that perform transfer of data

between server and clients is build

according to IPv6 Internet Protocol

and makes possible the coded and

distributed to a large number of users

interconnected in a large network.

Using Java programming language to

develop this package makes possible

the integration of data into any type of

web applications and even to include

custom methods from specialized

drivers that connect user’s application

to the data stored on the server side.

Introduction

An important role in Web

applications has the oriented-object

language Java, who can perform tasks

as access data from databases

managed by SGBD-s as Oracle,

Microsoft SQL Server, MySQL,

Microsoft Access, Visual Fox, etc. and

for semi-structured data the usual

language is XML. Java programming

language extends the possibilities of

the Web servers and is the basic

element in Web tools like Servlet, JSP,

JSF, Taglibs, Struts, etc. It also is the

programming language used for

building beans such as CMP Beans

(beans which have the state

synchronized with elements from

databases on which the mapping is

made), EJB Beans (beans that are

Enterprise JavaBeans used in

transactions, user commands, etc.),

ADF JavaBeans (beans used in models

like ADF – Application Development

Framework, for transactions, user

interfaces, session beans.

The programming language Java

binds the Web interfaces with

databases through specific

connections drives specific for each

SGBD, manages the users sessions,

manages the users connections,

transmits and treats the request-

response events. In the project will be

presented also others programming

languages used in building Web

applications such as: PHP, C#, Perl,

etc. the programming languages that

make possible the accessing data from

databases managed by SGBD-s or

semi-structured data which can be

found in XML files. The data can be

transmitted through network very

easily because is packed for IPv6

Internet Protocol packages and ready

to use after it is handled by a custom

Java package built to work with

different types of data and with this

new Internet Protocol [3], [4]. There

are modern ways of building Web

applications through the usage the

latest technologies in Web domain, by

using the programming language Java

inside of this applications and specify

different ways of accessing different

types of data through Java connections.

The Java Programming

Language for IPv6

Internet Protocol

Internet Protocol version 6 (IPv6) is

the latest revision of the Internet

Protocol (IP), the communications

protocol that provides an identification

and location system for computers on

networks and routes traffic across the

Internet. IPv6 was developed by the

Internet Engineering Task Force (IETF)

to deal with the long-anticipated

problem of IPv4 address exhaustion.

Internet Protocol IPv6 intends to

replace IPv4, which still carries the

vast majority of Internet traffic. IPv6

uses a 128-bit address, allowing 2
128

, or

approximately 3.4×10
38

 addresses, as

IPv4 uses 32-bit addresses. IPv4 allows

only approximately 4.3 billion

addresses. The two protocols aren’t

designed to be interoperable,

complicating the transition to IPv6.

IPv6 addresses are represented as

eight groups of four hexadecimal digits

separated by colons, for example

1875:0gh6:46a9:0968:703g:6a4e:0620:

5631, but methods of abbreviation of

this full notation exist [4].

IPv6 is an Internet Layer protocol for

packet-switched internetworking and

provides end-to-end datagram

transmission across multiple IP

networks, closely adhering to the

design principles developed in the

previous version of the protocol,

Internet Protocol Version 4 (IPv4).

IPv6 was first formally described in

Internet standard document RFC 2460,

published in December 1998. In

addition to offering more addresses,

IPv6 also implements features not

T

76

present in IPv4. It simplifies aspects of

address assignment (stateless address

auto configuration), network

renumbering and router announcements

when changing network connectivity

providers. It simplifies processing of

packets by routers by placing the need

for packet fragmentation into the end

points. The IPv6 subnet size is

standardized by fixing the size of the

host identifier portion of an address to

64 bits to facilitate an automatic

mechanism for forming the host

identifier from link layer addressing

information (MAC address). Network

security was a design requirement of

the IPv6 architecture, and included the

original specification of IPsec [1], [4].

IPv6 does not specify

interoperability features with IPv4, but

essentially creates a parallel,

independent network. Exchanging

traffic between the two networks

requires translator gateways or other

transition technologies. Multicasting,

the transmission of a packet to multiple

destinations in a single send operation,

is part of the base specification in IPv6.

In IPv4 this is an optional although

commonly implemented feature. IPv6

multicast addressing shares common

features and protocols with IPv4

multicast, but also provides changes

and improvements by eliminating the

need for certain protocols.

Using Custom Java

Package that is

Designed for Data in

IPv6 Architecture

Java programming language permits

building business applications, in

special Web applications, regardless of

system operations and can access

different types of data that can be

structured in databases or semi-

structured in XML files. Java is a

programming language object oriented

that offers many possibilities in the

domain of accessing data. It is very

adaptive, is open-source, can be used

with any type of operating system, it

can be expand through the creation of

new classes, new packages, new

libraries by a large community of

programmers, it extends the capacities

and possibilities of Web servers and

also is the most popular and robust

programming language for building

business applications [2].

The most efficient way to customize

applications is to build the own specific

Java package that is able to use data in

IPv6 architecture and use them in a

persistent way through specific

methods that are encapsulated in this

package. My own solution is to build a

custom Java class that transfer different

types of data from the server side in

IPv6 packages to the client side. The

code is designed to work with IPV6

protocol and so the data is prepared for

these types of IP packages and ready to

for transition over a network.
The source code for the custom

package is:

package pckg1;

public class Server1 {

private static final Object AF_INET6

= null;

private static final String PF_INET6

= null;

private static final String

SOCK_STREAM = null;

private static final String

IPPROTO_TCP = null;

private static final String F_SETFL =

null;

private static final String

NONBLCK = null;

private static final String

SOL_SOCKET = null;

private static final String

REUSEADDR = null;

int BUFLEN=32698;

int MAXCLIENTS=4096;

short DEBUG_LEVEL = 0;

void usage(String argv, String string)

{

 System.out.println("Error: " +

string);

 System.out.println("Usage: "

+ argv);

}

void debug(int i, String argv, String s)

{

 if (i <= DEBUG_LEVEL)

 {

 System.out.println("s: " + argv + s);

 }

}

The main method:

int main(int argc, String[] argv, char

envp)

{

 int i, j, rval;

 int sockfd6;

 int nclients, maxfd;

 int clients[]=new

int[MAXCLIENTS];

 struct host_ent;

 struct sockaddr_in6, destipv6;

 socklen_t socklen;

 int so_optval;

 struct servent, srvp;

 int e_save;

 int success;

 char addrlist;

 FDIPV6SET read_fds, write_fds,

except_fds;

 char buf[]=new char[BUFLEN];

 int mlen;

 char s[]=new char[BUFLEN];

 char u[]=new char[BUFLEN];

 time_t t;

 char ts;

 /* Check to see if debug level

specified */

 if (argc == 3)

 {

if (argv[1].compareTo("3") !=0)

usage(argv[0], "Invalid option.");

 rval=(int) strtol(argv[2], "", 0);

 int errno;

 if (errno != 0)

 {

 System.out.println("Invalid

debug level " + argv[0] + argv[3]);

 }

 else

 {

 DEBUG_LEVEL=(short) rval;

 }

 }

 /* Otherwise, no arguments

expected. */

 else if (argc != 1)

 {

 usage(argv[0], "Incorrect

arguments.");

 }

77

 /* Create an empty IPv6 socket

interface specification */

 (boolean) memset(destipv6, 0,

sizeof(destipv6));

 /* Set up for IPv6 */

 destipv6.sock6f = AF_INET6;

 /* Choose tcp service */

 if ((srvp = getservbyname("test",

"tcp")) == 0) {

 System.out.println("cannot

find port number for test service." +

argv[0]);

 } else {

 int s_port;

 destipv6.portipv6 = (int) srvp-

>s_port;

 }

 /* Bind to any and all local

addresses */

 Object in6addr_any;

 destipv6.addripv6 = in6addr_any;

 /* Create the sockets */

 if ((sockfd6 = socket(PF_INET6,

SOCK_STREAM, IPPROTO_TCP))

== -1)

 {

 System.out.printf(s, BUFLEN,

"failed to create socket for v6 listener",

argv[0], mlen);

 perror(s);

 }

 System.out.printf(s, BUFLEN,

"Socket created: ", null, sockfd6);

 debug(5, argv[0], s);

/* Set to non-blocking */

 if (fcntl(sockfd6, F_SETFL,

NONBLCK) < 0)

 {

 System.out.printf(s, BUFLEN,

"could not set v6 nonblocking",argv[0],

mlen);

 perror(s);

 }

 System.out.printf(s, BUFLEN,

"Socket set to v6 non-blocking: ", null,

sockfd6);

 debug(5, argv[0], s);

 /* Mark as re-usable (accept more

than one connection to same socket) */

 so_optval = 1;

 if (setsockopt(sockfd6,

SOL_SOCKET, REUSEADDR, (char)

so_optval,

 sizeof(REUSEADDR)) < 0)

 {

 System.out.printf(s, BUFLEN,

"setsockopt on failed", argv[0],

sockfd6);

 perror(s);

 }

 /* Actually bind the socket to the

port and addresses */

 if (bind(sockfd6, destipv6,

sizeof(destipv6)) == -1)

 {

 System.out.printf(s, BUFLEN,

"bind v6 failed", argv[0], mlen);

 perror(s);

 }

 /* Tell the kernel to listen for new

connections, queue up to 10

connections */

 listen(sockfd6, 10);

 /* Track the highest active file

descriptor number for select */

 Object stdin;

maxfd = (fileno(stdin) > sockfd6 ?

fileno(stdin) : sockfd6);

 nclients = 0;

 while(1)

 {

 FD_ZERO(read_fds);

 FD_ZERO(write_fds);

 FD_ZERO(except_fds);

 FDIPV6SET(sockfd6, read_fds);

 FDIPV6SET(sockfd6, except_fds);

 for (i = 0; i < nclients; i++)

 {

 System.out.printf(s, BUFLEN,

"FDIPV6SET %d [%d] for read and

 exceptions", i, clients[i]);

 debug(5, argv[0], s);

 FDIPV6SET(clients[i],

&read_fds);

 FDIPV6SET(clients[i],

&except_fds);

 }

 System.out.printf(s, BUFLEN,

"Entering select with maxfd:", maxfd,

 mlen);

 debug(5, argv[0], s);

 /* Wait for someone to do

something */

 select(maxfd + 1, read_fds,

write_fds, except_fds, null);

 /* Process an exception on the

socket itself */

 if (FDIPV6SET(sockfd6,

&except_fds))

 {

 perror("Exception on socket.");

 fprintf(stderr, "Exiting");

 exit(7);

 }

 /* A read event on the socket is a

new connection */

 if (FD_ISSET(sockfd6, read_fds))

 {

 socklen = sizeof(destipv6);

 /* Accept the new connection */

 rval = accept(sockfd6, (struct

sockaddr *) destipv6, socklen);

 if (rval == -1)

 {

 inetipv6ntp(destipv6.sock6f,

destipv6.addripv6.addressv6, buf,

 BUFLEN);

 System.out.printf(s, BUFLEN,

"ipv6 Accept failed for %s %d\0",

 buf, destipv6.portipv6);

 perror(s);

 }

 else

 {

 /* Too many clients? */

 if (nclients == MAXCLIENTS)

 {

 (void) send(rval, "Too many

clients, please try later.\n",

 strlen("Too many

clients, try later.\n"),

MESSAGE_DNTW);

 close(rval);

 }

 else

 {

 /* Add client to list of clients

*/

 clients[nclients++] = rval;

 if (rval > maxfd) maxfd = rval;

 (void)

inetipv6ntp(destipv6.sock6f,

destipv6.addripv6.addressv6,

 buf,

BUFLEN);

 System.out.printf(s, BUFLEN,

"Accepted V6 connection from %s %d

 as %d\n", buf,

destipv6.portipv6, rval);

 debug(1, argv[0], s);

 System.out.printf(s, BUFLEN,

78

"You are client %d [%d]. Client

 connected.\n\0", nclients, rval);

 send(rval, s, strnlen(s,

BUFLEN), MESSAGE_DNTW);

 }

 }

 }

 /* Check for events from each

client */

 for (i = 0; i < nclients; i++)

 {

 System.out.printf(s, BUFLEN,

"Checking client %d [%d] for read

 indicator.\n",i, clients[i]);

 debug(5, argv[0], s);

 /* Client read events */

 if (FD_ISSET(clients[i],

read_fds))

 {

 System.out.printf(s, BUFLEN,

"Client %d [%d] marked for read.\n",

 i, clients[i]);

 debug(1, argv[0], s);

 /* Read from client */

 if ((rval=recv(clients[i], buf,

BUFLEN-1, MESSAGE_DNTW)) < 1)

 {

 System.out.printf(s, BUFLEN,

"Short recv %d octets from %d

 [%d]\0", rval, i, clients[i]);

 perror(s);

 /* Treat a 0 byte receive as an

exception */

 FDIPV6SET(clients[i],

except_fds);

 }

 buf[rval]=0;

 System.out.printf(s, BUFLEN,

"Received: %d (%d) bytes containing

 %s", rval, strnlen(buf,

BUFLEN), buf);

 debug(5, argv[0], s);

 t=time(NULL);

 ts=ctime(t);

 ts[24]=0;

 System.out.printf(s, BUFLEN,

"Client %d [%d] at %s: %s\0", i,

 clients[i], ts, buf);

 System.out.printf(u, BUFLEN,

"Message Length: %d, %s", strnlen(s,

 BUFLEN), s);

 debug(5, argv[0], u);

 /* Send the message to every

other client */

 for(j=0; j < nclients; j++)

 {

 /* Skip the sender */

 if (j == i) continue;

 /* Send the message */

 send(clients[j], s, strnlen(s,

BUFLEN), MESSAGE_DNTW);

 }

 }

 /* Client eception events */

 if (FD_ISSET(clients[i],

except_fds))

 {

 /* Close the client connection */

 close(clients[i]);

 /* Flag the client as no longer

connected */

 clients[i]=-1;

 }

 }

 /* Remove disconnected clients

from list and recompute maxfd */

 maxfd = fileno(stdin);

 if (sockfd6 > maxfd) maxfd =

sockfd6;

 /* Iterate through and condense

list of clients */

 for(i=0; i < nclients; i++)

 {

 if (clients[i] == -1)

 {

 System.out.printf(s, BUFLEN,

"Client: %d Removed.\n", i);

 debug(1, argv[0], s);

 for(j=i; j < nclients-1; j++)

 {

 clients[j]=clients[j+1];

 }

 nclients--;

 }

 if (clients[i] > maxfd) maxfd =

clients[i];

 System.out.printf(s, BUFLEN,

"End of loop %d / %d (%d)\n", i,

 nclients, maxfd);

 debug(5, argv[0], s);

 }

 System.out.printf(s, BUFLEN,

"Finished removal loop

(maxfd: %d).\n",

 maxfd);

 debug(3, argv[0], s);

 }

 exit(0);

}

The source code for the client side:

public class Client1 {

private static final Object

PF_UNSPEC = null;

private static final Object

SOCK_STREAM = null;

private static final Object

IPPROTO_TCP = null;

private static final String

MSG_DONTWAIT = null;

int BUFLEN=32698;

short DEBUG_LEVEL=0;

int strnlen(char[] buf, int len)

{

 int i;

 for(i=0; i<len && i< (buf.length+i);

i++);

 return i;

}

void usage(String argv, String string)

{

 System.out.println("Error: "+

string);

 System.out.println("Usage:

<server>" + argv);

}

void debug(int i, String argv, char[] s)

{

 if (i <= DEBUG_LEVEL)

 {

 System.out.println("%s: " +

argv + s);

 }

}

int main(int argc, String[] argv, char

envp)

{

 int rval, sockfd6;

 struct addrinfo;

 struct res, r;

 struct host_ent;

 int e_save;

 int success;

 char addrlist;

 fd_set read_fds, write_fds,

except_fds;

 char buf[]=new

char[BUFLEN];

 char s[]=new char[BUFLEN];

 int mlen;

 boolean rr;

 int errno;

 if (argc == 4)

 {

 if

(argv[2].compareTo("3") !=0)

79

usage(argv[0], "Invalid

 option.");

 rval=(int) strtol(argv[3], "",

0);

 if (errno != 0)

 {

 System.out.println("Invalid

debug level " + argv[0] + argv[3]);

 }

 else

 {

 DEBUG_LEVEL=(short)

rval;

 }

 }

 else if (argc != 2)

 {

 usage(argv[0], "Incorrect

arguments.");

 }

 /* Get address info for

specified host and demo service */

 memset(addrinfo, 0,

sizeof(addrinfo));

addrinfo.ai_family=PF_UNSPEC;

addrinfo.ai_socktype=SOCK_STREA

M;

addrinfo.ai_protocol=IPPROTO_TCP;

 if (rval = getaddrinfo(argv[1],

"text", addrinfo, res) != 0) {

 System.out.println("Failed to

resolve address information." +

 argv[0]);

 }

 int ai_addr;

 struct sockaddr;

 for (r=res; r; r = (int)r-

>ai_next) {

 int ai_family;

 int ai_socktype;

 int ai_protocol;

 sockfd6 =socket(r-

>ai_family, r->ai_socktype, (int)r

 ->ai_protocol);

 int ai_addrlen;

 if

(connect(sockfd6, r->ai_addr, r-

>ai_addrlen) < 0)

 {

 e_save = errno;

 close(sockfd6);

 errno = e_save;

System.out.println("Failed attempt to "

+ argv[0], get_ip_str((struct

sockaddr)r->ai_addr, buf, BUFLEN));

System.out.println("Socket error");

 } else {

System.out.println(s, BUFLEN,

"Succeeded to ",

argv[0],get_ip_str((struct sockaddr)r-

>ai_addr, buf, BUFLEN));

debug(5, argv[0], s);

success++;

break;

 }

 }

 if (success == 0)

 {

System.out.println("Failed to

connect to " + argv[0] + argv[1]);

freeaddrinfo(res);

}

printf("%s: Successfully connected

to %s at %s on FD %d.\n",

argv[0],argv[1],get_ip_str((struct

sockaddr)r

->ai_addr, buf, BUFLEN), sockfd6);

 freeaddrinfo(res);

 while(rr)

 {

 FD_ZERO(read_fds);

 FD_ZERO(write_fds);

 FD_ZERO(except_fds);

 Object stdin;

 FD_SET(fileno(stdin), read_fds);

FD_SET(fileno(stdin),except_fds);

 FD_SET(sockfd6, read_fds);

 FD_SET(sockfd6, except_fds);

 select(fileno(stdin) > sockfd6 ?

fileno(stdin)+1 : sockfd6+1, read_fds,

write_fds, except_fds, "");

if (FD_SET(fileno(stdin),

except_fds))

 {

if ((Boolean) sizeof(stdin))

 {

 close(sockfd6);

System.out.println("End of file

detected, exiting");

 }

else

{

System.out.println("Exception on

STDIN");

System.out.println("Exiting.");

 }

}

if (FD_SET(sockfd6, except_fds))

 {

System.out.println("Exception on

socket.");

System.out.println("Exiting.");

}

if (FD_SET(sockfd6, read_fds))

 {

 /* Read from socket and display to

user */

mlen = recv(sockfd6, buf, BUFLEN-

1, MSG_DONTWAIT);

buf[mlen]=0;

if (mlen == 0)

{

System.out.println("Remote site was

not found.");

}

 else

 {

 System.out.println("Received " +

mlen + "bytes: " + buf);

 }

}

 if (FD_SET(fileno(stdin), read_fds))

 {

 fgets(buf, BUFLEN, stdin);

 String size_t;

System.out.println(BUFLEN + "Sent "

+ send(sockfd6, buf,

 (size_t) + "octets to

server." + strnlen(buf, BUFLEN), 0));

 debug(5,argv[0],

s);

 }

 }

}

In the code above there are methods

encapsulated in a Java package

designed for IPv6 architecture used to

transfer data of different types that are

coming from web applications.

The advantage of using a custom

package for manipulating data is that

the programmer has the full control

over the design and implementation of

the applications, with little changes can

access every type of data and also this

package can be improved and used by a

large number of software developers

because is a Java class and so is open-

source. In the source code of this

package could be implemented various

methods for managing data in

databases (select, insert, update, delete,

create, etc.) or from XML files [2], [5].

Using a custom package for

manipulating data (own class) has

80

many advantages like accessing

different types of data, create the own

objects, manage various structures of

data including XML files and because

this package is built with Java

programming language makes it open-

source, easy to customize by other

software developers and can be

improved by implementing different

methods and classes.

In IPv6, the packet header and the

process of packet forwarding are

simplified. Although IPv6 packet

headers are at least twice the size of

IPv4 packet headers, packet processing

by routers is generally more efficient,

thereby extending the end-to-end

principle of Internet design [1], [4].

Conclusions

The Java programming language

allow to develop custom package (own

package) that is design to work with

data specific to IPv6 Internet Protocol.

This network protocol is different from

the old protocol IPv4 Internet Protocol,

so the web applications have to be

adapted to work with these types of

data through a custom Java package

that is platform free.

The manipulation of data is an

important aspect because the

programmer can use data from different

types of sources and is a very important

task to integrate them [2], [3]. The

open-source code available in a custom

package makes possible the

implementation of different methods

very easy and makes possible the

customization afterwards by other

groups of programmers and so the web

application becomes open-source

applications.

The custom package presented above

can be used in different types of

enterprise business applications, also

may be improved by other

programmers through the

implementation of their own classes

and methods and also may extend the

current facilities of the existing

methods for working with data [2], [5].

The transition to the IPv6 Internet

Protocol impose rebuilding and

rethinking of many web application in

an open-source direction through

object-oriented programming language

that is free from existing platforms.■

Dănuţ-Octavian

Simion

Business

Administration,

University of South

East Europe Lumina,

Bucharest, Romania

danut_so@yahoo.com

References

[1] David Gallardo, “Java design patterns
101”, ibm.com/developerWorks, 2011.

[2] Dănuţ-Octavian Simion, “Using Java
in Business Applications”, WSEAS
Conferences in the University
Politehnica, Bucharest, Romania, pp.
218–223, April 20-22, 2010,
Conference/Session:
ECC_COMPUTING, ISBN: 978-960-
474-178-6, ISSN: 1790-5117.

[3] Owen DeLong, “Porting IPv4
applications to IPv4/v6 dual stack”,
Hurricane Electric, 2011.

[4] Owen DeLong, “Essential IPv6 for
the Linux Systems Administrator”,
Hurricane Electric, 2010.

[5] James W. Cooper, “Java Design
Patterns At a Glance”,
www.javacamp.org/designPattern/
2010.

[6] URI: http://javaworld.com/javaworld/

[7] URI:http://www.packtpub.com/servic
e-oriented-java-business-integration/

[8] URI:
http://www.sun.com/software/javaent
erprisesystem/

[9] URI: http://www.manageability.org/

[10] URI: http://www.javarules.org/

