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n the paper the simplified criterion of a steady – state stability of electric power systems (EPS) is justified on the basis of 

Lyapunov functions in a quadratic form ensuring necessary and sufficient conditions of its performance. Upon that, use of 

the node – voltage equations allows reducing study of a steady – state stability of complex EPS to study of the generator – bus 

system. The obtained results facilitate studies of a steady – state stability of the complex systems and have the practical 

importance. 

 

Introduction 
 

Study of EPS stability at small disturbances is based on known classical concepts of the General Theory of Stability of 

Motion [1 – 4]. 

Study of stability, at small disturbances of EPS operating condition parameters (steady – state stability), consists in 

definition of a possibility of steady – state operation under given values of electric power system’s parameters, an electricity 

generating sources operation state, loads in nodal points and settings of automatic control equipment [3, 5]. The problem is 

usually solved for the determined conditions. 

Three aspects of stability violation of EPS upon small fluctuations of operating condition parameters are known [3], namely, 

aperiodic and self – oscillation (electromechanical instability), and also self – excitation (electromagnetic instability). 

Routh – Hurwitz algebraic stability criteria require to satisfy necessary and sufficient conditions: positivity of characteristic 

equation coefficients and the matrix determinants made up from characteristic equation coefficients of the system being 

investigated. 

In the case if Lyapunov functions in a quadratic form are applied the same stability conditions require positivity of all minor 

determinants of a coefficient matrix for a differential equation of the system being investigated. 

In the case of investigation of multimachine systems, a formal characterization and computing procedures become more 

complicated in both cases. 

In most cases the complex power system steady – state stability analysis is carried out under the supposition of lack of a self 

– oscillation in the electric power system considering that this requirement is ensured by appropriate setting of automatic 

I 



ISSN: 2375-3803  75 

 

regulators [3]. In this case the problem becomes simpler and is reduced to study of an aperiodic steady – state stability of the 

system, i.e. to definition of dependence and a sign for the constant term of the characteristic equation of the system upon the 

continuous variation of any parameter of the operation condition. 

Now, except for classical, direct solution methods for calculation of a matrix spectrum of system are also used for complete 

steady – state stability analysis, including an estimate of lack of eigenvalues in the right half – plane by indirect criteria, 

dynamic simulation methods, etc. [6]. 

The devices of the synchronized phasor measurement units (SPMU) being developed create premises for development of 

new analysis methods and algorithms of an electric power system state at small disturbances including methods to detect weak 

tie – lines and critical sections that are based exclusively on operatively obtained values of operating condition parameters [6]. 

The simplified steady – state stability criterion of a complex electric power system that involves examining positivity of 

only the first minor determinant of a coefficient matrix for a differential equation of the system that makes easier the solution 

of the problem noted above are considered in the paper [9]. It is shown below that the first minor contains all three types of 

steady – state stability violation of an electric power system. 

 

Main Body 
 

One of the most fruitful methods for study of EPS stability is application of a direct (second) Lyapunov's method which require 

selection of special Lyapunov functions and obtaining of their derivatives taking into account the perturbation equations [1, 2, 7]. 

According to Lyapunov's direct method which is applied to study of a dynamic systems stability including electrical power 

systems it is generally supposed definition of special sign – definite function of state variables V (х1, х2, х3, …, хn) which 

derivative dV/dt taken on account of system of differential equations describing dynamics of the system, should be sign – 

definite with an opposite sign to V or be identically zero or strictly sign – definite with an opposite sign to V. Under these 

requirements the system is, accordingly, stable or asymptotically stable [1, 2]. Construction of V for nonlinear systems is 

generally performed by a trial method and obtained results ensure only sufficient conditions of stability for the explored system. 

At the same time, in the case of linear autonomous systems there is a Lyapunov function in a quadratic form ensuring both 

necessary and sufficient conditions of its stability [4]. Modern counting machines offer ample opportunities for a solution of the 

higher order equations [8] and, accordingly, successful application of Lyapunov functions in a quadratic form for study of a 

steady – state stability for complex EPS [9]. 

The essence of the method consists in the following. Let's consider the linear time – invariant system described in a state space 

by the system of differential equations: 

,dx dt AX=                                          (1) 

where A is a square matrix with constant elements; X is a n – dimensional column vector with coordinates x1 – xn. 

Following Lyapunov, we will define for this system function V in a quadratic form [1, 2, 4]: 

, 1

, i, j 1,2,..., n;
n

T

ij i j
i j

V q x x X QX
=

= = =∑                               (2) 

where Q is yet unknown square matrix of coefficients of a quadratic form; X
T
 is transposed X (row – vector). 

Owing to (1) the total derivative of V with time looks like: 

(A ) .T TdV dt X Q QA X= +                                     (3) 

Let's require that V should satisfy the condition: 

,dV dt W= −                                             (4) 

where W is arbitrarily prescribed quadratic form of state variables. 

Let's denote: 
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A
T

Q QA C+ = −                                            (5) 

The main result consists in that the system (1) is asymptotically stable in only case when the (2) has positive definite solutions 

Q at any positive definite matrix C [4]. 

The Equation (5) puts in correspondence to any symmetric matrix Q a matrix C and vice versa, and this correspondence is 

linear [4, 10]. Elements of matrix Q are determined from (5) by a solution of n·(n+1)/2 equations, where n is a number of initial 

differential equations. If to set a positive definite symmetric matrix C (where the determined from (5) matrix Q will be also 

positive definite) then due to linearity and stationarity of system (1), according to the Lyapunov's theorem, we will obtain an 

asymptotical stability of its equilibrium state. Upon that, stability conditions should be strictly equivalent to the obtained on the 

basis of Routh – Hurwitz criterion [3]. 

There is a close connection between the Lyapunov's theorem and other algebraic stability criteria: the Routh – Hurwitz 

criterion [11], the Hermite stability criterion [12], the Shur – Kon criterion [10], and the constituent matrix method [13, 14]. The 

main advantage of the Lyapunov's second method for stability when studying stability conditions is related to a possibility to 

operate in calculations with elements of a matrix A omitting calculations of coefficients of a characteristic polynomial for this 

matrix. 

On the basis of Lyapunov's functions in a quadratic form, we will carry out computational – experimental research of a steady 

– state stability of both simplex and complex EPS and compare results for them with the results obtained conventionally on the 

basis of the Routh – Hurwitz criterion. 

The characteristic equation at small fluctuations of operating condition parameters at study of a steady – state stability of the 

simplex uncontrolled EPS (Figure1A) taking into account transients in a field winding looks like [3, 9]: 

3 2

0 1 2 3 0a p a p a p a+ + + =                                    (6) 

where a0, a1, a2, a3 are the coefficients of a characteristic equation which are functions of operating condition parameters and EPS. 

In our case Lyapunov function in a quadratic form at n = 3 according to (2) looks like: 

2 2 2

11 1 22 2 33 3 12 1 2 13 1 3 23 2 3
2 2 2

T
V X QX q x q x q x q x x q x x q x x= = + + + + +                          (7) 

Let set C in the form of an identity matrix. Then 

2 2 2

1 2 3W x x x= + +                                          (8) 

Upon that, the matrix of coefficients of a quadratic form (7) according to (2) looks like: 

11 12 13

21 22 23

31 31 33

.

q q q

Q q q q

q q q

 
 =  
  

                                      (9) 

 

Figure 1. Behavior of minors of a quadratic form for the matrix Lyapunov equation (B) for the EPS circuit design (A). 

We have set negatively definite derivative W (positively definite symmetric C). If upon that the positive definiteness 

requirements to the matrix Q of a quadratic form (7) are satisfied then initial system equilibrium state asymptotic stability 

conditions (1) will be obviously provided. 

For the positive definiteness of a quadratic form (7) according to Sylvester’s criterion [1, 4, 7] it is necessary and sufficient that 

principal diagonal minors of matrix Q were positive: 
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                                    (10) 

Let's start checking violation of positivity of these minors with the first ∆л1=q11. As disclosing ∆л1 shows, the minor can 

become negative if following requirements [9] are broken: 

1 0,
qEP

C
δ

∂
= >

∂
                                         (11) 

' ,d c dX X X> >                                        (12) 

2 sin
arcsin ,

q ii

ii

E a
a

U
δ > −                                  (13) 

where PEq is the real output power of the generator at Eq = const., U is the terminal voltage of the generator, Eq is EMF of the 

generator, Xd, X
’
d, Xc are synchronous and transient reactance of the synchronous generator and reactance of the transmission 

line, accordingly, δ is the torque angle of the generator that determines stability of the generator and therefore, EPS, αii is a 

complementary angle [3, 9]. 

The requirement (11) can be broken only in the case of overload which may cause an aperiodic instability of EPS. 

Violation of the inequality (12) is possible in the case of overcompensation of a reactance of the power line by the direct 

compensation plants (series capacitances) that leads to electromagnetic instability in a power system (self – excitation of 

generator). 

The requirement (13) can be broken in operating conditions close to light load conditions and synchronous generator operation 

with a transmitting line with appreciable resistances and thereby a stability violation process has oscillatory behavior and is 

observed in the form of electromechanical oscillation of the generator rotor(self – oscillation). 

In other words, requirements to violation of positivity of the first minor in a square matrix (10) imply all possible conditions 

that may lead to violation of electrical power system steady – state stability, i.e., the complete problem to define conditions of 

EPS instability is solved "in the small". 

The analysis has shown [9] that positivity of ∆Л2, ∆Л3 is reduced to satisfaction of the same requirements (11) – (13). 

So, conditions that may lead to violation of an electrical power system steady – state stability obtained by Lyapunov's second 

method coincide with earlier discovered on the basis of the generalized Routh – Hurwitz conditions [3]. 

It is necessary to note that for the first time requirements of adequacy of the results obtained on the basis of Lyapunov 

functions in a quadratic form and a Routh – Hurwitz criterion for an electrical power system have been obtained in the work [15]. 

With a view of checking theoretical rules there were carried out computational – experimental researches of violation of 

principal minors positivity in a quadratic matrix (10). Calculations were carried out for the simplex and complex EPS [9]. 

Calculations were also carried out on the basis of the Routh – Hurwitz criterion for the purpose of comparison. 

Figure 1B shows variations of minors (10) at gradual increasing the load in EPS (increasing the transmitted real power). The 

analysis shows that upon increasing the operation condition loads variations for all minors �Лi from the matrix of a quadratic 

form of Lyapunov function (10) have the equal character, while variations of characteristic equation coefficients (6) and Hurwitz 

determinants are absolutely different [9]. 

The result allows using positivity of the first minor, i.e. q11> 0, for complete analysis of a steady – state stability of the 

electrical power system because q11 contains all information on possible kinds of EPS instability "in the small". Upon that, 

positivity of the higher minors, i.e. �Лi>0 (i = 2,..., n; where n is the order of a differential equation of initial EPS) may not be 

considered in the first approximation. Hence, it is possible to state simplified (practical) criterion of a steady – state stability 

q11>0 which gives both necessary and sufficient conditions of its performance. Traditionally [3], these requirements are obtained 
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on the basis of positivity of characteristic equation coefficients for the system (the necessary condition) and positivenesses of 

Routh – Hurwitz matrix determinants (the sufficient condition). 

The calculation analysis of steady – state stability for EPS of various complexities shows [9] that the strictest in theoretical 

aspect, convenient in computing aspect and effective aspect by the obtained results is use of two fundamental methods: the 

method of Lyapunov functions in a quadratic form and the method of the nodal equations [9]. The proposed stability research 

technique "in the small" has been suggested for the first time in the work [9], and its essence consists in the following. 

When studying a steady – state stability of complex EPS, calculation of the steady – state condition on the basis of the 

node-voltage equations [9] is carried out at first, voltages Uk for each node k and their arguments δk, and further for each j – th 

generator are determined; then positivity of the first minor q11j (10) of the matrix of quadratic form Q is checked using these data. 

Thereby the stability of the generator which is the fastest to come closer to a limit at the given load is determined. In essence, 

stability study "in the small" of the complex EPS using the proposed method turns to study of the generator – bus system. 

Let's consider steady – state stability conditions of complex EPS by the example of three-generator system (Figure 2) since 

such model of the electrical power system as a whole adequately reflects properties and performances of the complex electrical 

system [5, 16]. 

 

Figure 2. The circuit design of three – generator electrical power system.  

The circuit parameters: The real output power of the generators – PG1=PG2=PG3=750 MW; The power factor of the generators 

– cosφG1=0,85, cosφG2=0,80, cosφG3=0,82; The terminal voltage of the generators – U1=U2=U3=500 kV; The length of the 

transmission lines – L1=250 km, L2=150 km; The loads parameters – P1=1550 MW, cosφ1=0,90; P2=150 MW, cosφ2=0,95; 

P3=100 MW, cosφ3=0,92. 

With a view of comparison of simulated results, operating condition parameters and schematic circuits in a multimachine 

system are chosen based on the following requirements: generator rated kilowatts and frequency droops of speed controller 

characteristics are equal (σ=∆f/∆P=0,05); and operating duty of the system should be made more severe being incremented by 

equal power values for each generator. 

Figure 3 represents characters of variations q11j (where j=1–3) of the first elements of minors for matrixes of quadratic forms 

Qj for each generator of the system in question.  

Changes (increasing) of minors of a quadratic form ξI for different generators in the case if loading of operating conditions of 

the electrical power system increases are different, that is clear from Figure 3.  

 

Figure 3. Definition of the steady – state stability simplified criterion for the complex EPS (П is the operating condition parameter of EPS). 

Upon condition if the small deviations of EPS operating condition parameters are constant (∆П=constant) it is possible to 

write: 
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3 2 1 3 1 1,and h h hξ ξ ξ ∆ ∆ ∆≻ ≻ ≻ ≻                               (14) 

Where ∆hj are the incremental rates of first minors of quadratic form matrixes for each generator showing how quickly a 

generator comes closer to the stability limit. The analytical expression ∆hj, for example, for the second generator at i – th step 

looks like: 

2, 2( 1)2
2

2(i,i 1) 2, 2( 1)

( ).
i i

i i

h
П П П

ξ +

+ +

∆ − ∆
∆ = = ∆

∆ −
                              (15) 

Generally (15) looks like: 

j j( 1)

ji, j(j 1) ( 1)

( ),
j i i

j

ji j i

h
П П П

ξ +

+ +

∆ − ∆
∆ = = ∆

∆ −
                              (16) 

where П→U, f, I, δ, etc. are the operating condition parameters of EPS by which variations of minors for generators of the 

explored system as a result of increasing the loads of operating conditions can be determined, j is the generator for which (16) is 

calculated, i is a current step of increasing the loads for the given EPS operating condition parameter. 

Let's transfer to differentials under condition of small increments: 

( ).j jh d h∆ = ∆                                        (17) 

The condition ξI> 0 for a quadratic form is always satisfied, therefore it is possible to be restricted to study of strict 

performance of the inequality: 

j j( 1) 11,

( 1)

( ) 0.
i i j

j

ji j i i

dq
h

П П dП

+

+

∆ − ∆
∆ = ∆ =

−
≻                             (18) 

The condition (18) means that in order to provide a steady-state stability of j – th generator and, hence, EPS, the fulfillment of 

the following condition is required: 

11,
0.

j

i

dq

dП
≻                                         (19) 

On the basis of the obtained results it is possible to propose the following algorithm for studies of a steady – state stability of 

the complex electric power systems. 

With increasing the load by the given parameter of operating condition П at each step i and for each generator or the selected 

groups of generators the condition (19) is checked and compared with other similar conditions, i.e., fulfillment of conditions is 

checked: 

11,1 11,1 11,
... ... ,

ndq dq dq

dП dП dП
≻ ≻ ≻ ≻                                      (20) 

Where n is a number of generators or stations checked on a steady – state stability. The generator which first minor variation in 

a matrix of coefficients of a quadratic form is maximum will be the most critical from the point of view of steady – state stability 

violation: 

11,
max,

jdq

dП
→                                             (21) 

for the considered series of generators. 

Hence, j – th generator for which dq11,j / dП→max will be the first which comes to a steady – state stability limit of EPS. 

Thus, that generator which tends to steady – state stability violation, and also possible sections (lines) which represent the 

greatest danger from this point of view should be determined at first. The given factor is valuable also in that it allows defining 

the corresponding parameter of operating conditions which is most preferable to control the transient behavior of EPS in the case 

of regulation. This makes it possible to organize control of transient process of the generator using automatic excitation control, 
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automatic speed control and other control systems and proactively ensure its steady – state stability. The significance of this 

result is obvious to practice of maintenance of electric power systems. 

 

Conclusion 
 

The obtained theoretical and computational results confirmed for systems of various complexity allow checking stability of 

EPS "in the small" by study of positivity condition for the first minor of a Lyapunov function matrix in a quadratic form q11j> 0 

and to consider it as the practical (simplified) criterion of EPS steady – state stability providing its both necessary and sufficient 

conditions. Definition of the requirement dq11,j/dП→ max allows the generator to reveal that represents the greatest danger from 

the point of view of stability violation. Upon that, study of a steady – state stability of the complex EPS turns to study of the 

"generator – bus" circuit design that makes it possible to determine the particular generator or station which leads to violation 

of a system stability and an asynchronous condition in system. 

Thus, joint use of Lyapunov functions in a quadratic form and the node – voltage equations allows us to the fullest extent to 

explore a steady – state stability of the complex electrical power system including both its electromechanical and electromagnetic 

violations.� 
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